

MODULE SPECIFICATION

Module Title:	Automotive Sys	tems	Leve	el:	4	Credit Value:	20
Module code:	ENG492	Is this a new Yes module?			ode of mo eing repla		ENG480

Cost Centre:	GAPC	JACS3 code:	H300
--------------	------	-------------	------

Trimester(s) in which to be offered:	1+2	With effect from:	September 18
--------------------------------------	-----	----------------------	--------------

School: Technology D.Durieux	School:	Faculty of Arts, Science and Technology	Module Leader:	O.Durieux
------------------------------	---------	---	-------------------	-----------

Scheduled learning and teaching hours	60 hrs
Guided independent study	140 hrs
Placement	0 hrs
Module duration (total hours)	200 hrs

Programme(s) in which to be offered	Core	Option
BEng (Hons) Automotive Engineering	✓	

Pre-requisites	
None	

Office use only	
Initial approval February 17	
APSC approval of modification Sept 18	Version 1
Have any derogations received Academic Board approval?	Yes ✓ No 🗆

Module Aims

To develop an applied understanding and an overall basic appreciation of automotive engineering including performance on car, electrical, electronics and control systems which are now integral to modern motor vehicles.

Int	Intended Learning Outcomes						
At	At the end of this module, students will be able to Key Skills						
	Demonstrate abilities to work in a professional automotive		KS2				
1	environment, alone or in a team, in line with the HSE procedures, prepare risk assessments.	KS3	KS9				
2	Explain and report the role of electrical and electronic systems	KS1	KS3				
	in a modern motor vehicle; Demonstrate an understanding of sensor technology, signal conditioning and information technology relevant to automotive systems.	KS4	KS6				
		KS9					
3	3 Describe methods of performance data collection and component performance analysis		KS3				
4	Contextualise uncertainty in automotive design using social,	KS1	KS3				
4	ethical, economic and sustainable constraints.	KS9					
Tra	ansferable/key skills and other attributes						

Self-learning, practical application of theory, solving engineering problems and written communication.

Derogations

A derogation from regulations has been approved for this programme which means that whilst the pass mark is 40% overall, each element of assessment (where there is more than one assessment) requires a minimum mark of 30%.

Assessment:							
The assessment is based on a set of practical activities and investigations presented as a single portfolio. The learner is required to detail evidences of the tasks achieved during the completion of the module. The portfolio should cover all learning outcomes.							
Assessment numberLearning Outcomes to be metType of assessmentWeighting (%)Duration (if exam)Word count (or equivalent if appropriate)							
1	1,2,3,4	Learning Log	100%				

MODULE SPECIFICATION

Learning and Teaching Strategies:

The module will be presented to students through practical work and demonstrations in our fully equipped automotive laboratory.

Where possible, visits to local industries will be arranged to demonstrate system operations. Relevant videos will also be used to aid the learning process.

Syllabus outline:

Health and Safety in automotive environment. Review of procedures and risk assessments.

Electrical and electronic systems: An applied overview of modern vehicle electrical systems and electronic systems including wiring, protections, relays and connectors.

Management systems: Engine and vehicle management systems.

Sensors and signals: Functional consideration of measurement systems including sensors, signal conditioning and information technology and remote monitoring.

Data acquisition systems: Data collection, collation and analysis, data logging and interpretation.

Environmental legislation: Investigation of current legislation and "green" methods in automotive evaluation, viability of the developments investigated, extrapolate trends to predict future automotive design features from environmental perspective.

Bibliography:

Essential reading

Bosch R, GmbH (Author) (2014); Automotive Handbook, 9th Ed (Bosch Handbooks (Rep)); Professional Engineering Publishing

Denton T (2011); Automobile Mechanical and Electrical Systems, Ed; Butterworth Heinemann Ltd)

Other indicative reading

Ehsani M and Gao Y (2009); Modern Electric Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design; CRC Press Inc.

Ribbens W B, Mansour N P (2003); Understanding Automotive Electronics; 6th Ed; Newnes Martin V D (2000); Automotive Electrical Systems; Butterworth and Heinemann